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Abstract. There are many types of evolutionary algorithms, just like
genetic algorithms, evolution strategies or genetic programming. Thus
there are a lot of implementations of different EAs as well. One can
find many tools, programming libraries written in a wide variety of pro-
gramming languages, implementing several features of Evolutionary Al-
gorithms. However, many of them misses one or other feature by restrict-
ing the algorithm to a certain type. The aim of the work presented in
this paper is to introduce a general, object oriented EA model, and to
present an implementation of it. One of the most important advantages
of this system is that it uses a generalized view of EAs and evolutionary
operators, thus any combination of different types of evolutionary oper-
ators can be used with lots of parameters. The system is also easy to
extend, and still easy to understand and use. If one wants to use the al-
ready implemented data types and operators, implementing an EA is an
easy ride. For example an evolutionary algorithm solving a polynomial
approximation problem for real-valued polynomials can be implemented
with only 100 lines of C++ code.

1 Introduction

When someone decides to use evolutionary algorithms to solve a problem, a
decision is also made, what kind of EA is used. This usually determines the
possibly used operators, and the representations. The most common types are

– evolution strategies [Rec73] using real vectors, and operators on real numbers
(adding a random number, averaging, and so on),

– genetic algorithms [Hol75] [Gol89] with bitvector representations and bit
operators, and

– genetic programming [Koz92] with tree data structures, and tree operators.

However, one may want to combine several properties of these methods and
thus many home-brew systems cannot be considered as pure GAs, ESs or GPs.
The available programming environments, however, usually consider one of these
models, therefore they are not general enough.

In this paper a general EA model is constructed and an object oriented im-
plementation in the programming language ANSI C++ is presented. Advantages
of this object oriented C++ implementation are
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– easy to understand : a small number of clearly defined classes,
– easy to use: simple problems can be solved with 100 lines of code,
– easy to extend : new representation types and operators can be implemented

using inheritance
– general : a general view of EAs and operators is used
– fast : combines OO and the efficiency of C

1.1 Related Work

There are many implementations of evolutionary algorithms. Many of them was
examined, but no general EA implementation was found. SGA-C [SGE94] and
GENESIS [Gre84] were implemented in C, thus the advantages of the object
oriented programming cannot be used. SGA-C was not meant to be a general
tool, and GENESIS concentrates only on GAs as well. Evolvica [Evo] and its
predecessor eaLib [eaL] are implemented in Java, and though sometimes Java
programs may be fast, the author still prefers C++ over Java. Furthermore eaLib
have many classes, making its usage difficult, though there are many examples
in the documentation. Evolvica intends to be a programming framework, so it is
not only a library. From the libraries implemented in C++ three were examined,
GAlib [Wal96], EO [Mer] and GEA [Tót00]. GAlib has many nice features, can
handle different individuals and operators, and these can also be extended. But it
still does not use a general approach either for the algorithm or for the operators.
EO is also a fully-featured implementation, based on C++ templates available
for many platforms. However, it also lacks a general EA implementation and the
general approach to evolutionary operators, though different types of algorithms
can be implemented by subclassing a given algorithm class. GEA was developed
to overcome some disadvantages of these systems, but it does not consider giving
a general model for EAs or operators either.

As it can be seen, none of these libraries, systems use a general EA view,
and all of them use more or less the usual approach for operators, that is having
a crossover (recombination) followed by a mutation. To create a system having
these missing features is the aim of the work presented here. On the other hand
these systems have many nice features, not considered by the general EA design
and implementation introduced in this paper, but the detailed comparison of
these systems is beyond the scope of this paper.

We proceed as follows. First a general evolutionary algorithm model is in-
troduced. In Section 3 an object oriented design is given for the general EA
model. In the pseudocode an object oriented notation is used, that is attributes
and methods of objects are written as objectname.attr, and objectname.func().
This design is discussed further with concrete implementation details in Section
4. In Section 5 some examples are given how a specific problem can be solved
with the implemented general EA. Finally in Section 6 conclusions are drawn
and some future plans are mentioned.
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2 General Evolutionary Algorithm

To design a general evolutionary algorithm a very simple approach is used. The
EAs store a set of objects, do something with them, and create a new set of
objects. Doing something with the objects means that several evolutionary op-
erators and selections are applied on them. Sometimes selections are handled
as operators, but in our case they are distinguished from each other. When
searching in literature several types of selections can be found. One can select
individuals to be parents, one can select individuals from the generated indi-
viduals, that is from the offsprings to be survivors. One can also directly copy
individuals into the offsprings or even into the survivors. The latter one is called
elitism. Sometimes there are not enough survivors to make up a new population,
so new individuals may be created randomly. The selections use a fitness func-
tion to measure the goodness. To create a general evolutionary algorithm, it is
allowed for each selection to have an own fitness function.

Using all these components (4 selections with fitness functions and 2 opera-
tors) a general evolutionary loop can be constructed that can be seen in Figure 1.
In this figure circles represent populations, that is sets of individuals. Squares
are selections and operators, which take a set of individuals and return a new
set of individuals. These individuals may be only filtered (selections) or newly
generated (operators). The selections have a goodness measure, that is a fitness
function, according to which they filter the populations. These fitness functions
are Fps, Fcp, Fel and Fss for the different selections.

Fig. 1. General EA loop
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Before the algorithm starts, several constants are defined. These are Npop,
Nsel, Ngen, Ncopy and Nelit, showing the size of the population, the number
of selected, generated and copied individuals and the size of the elitism respec-
tively. The loop begins with a new population marked with a dot. If there are
less than Npop elements, the population is filled up with randomly generated
individuals. Parent selection using fitness function Fps selects Nsel individuals.
Then the evolutionary operators are applied on these individuals and Ngen new
individuals are created, and inserted into the offspring population. From the
original population Ncopy elements are added to this population using copy se-
lection with fitness function Fcp. The survivors are selected from the offspring
population using survivor selection with fitness function Fss into the new popu-
lation. Meanwhile Nelit individuals are inserted directly from the old population
into the new population by the elitism using fitness function Fel. This loop can
be implemented as Algorithm 1 shows.

Algorithm 1 General EA loop
General EA Loop(new pop)

1 while new pop.size < Npop

2 do new pop.insert(Random Individual())
3 old pop← new pop
4 parents← parent sel.select(old pop, Npsel)
5 offsprings← operators.apply(parents, Ngen)
6 offsprings += copy sel.select(old pop, Ncopy)
7 Nsurv ← min{Ncopy + Nsel, Npop −Nelit}
8 new pop← surv sel.select(offsprings, Nsurv)
9 new pop += elitism.select(old pop, Nelit)

10 return new pop

The experienced reader may have recognized that this model does not con-
sider the phenotype and the genotype. This model simply forgets the phenotype.
It is only needed for fitness evaluation, but the fitness function can be consid-
ered as a composition of the genotype decoding function and the phenotype
evaluation function, thus the phenotype never appears in the computer point of
view.

2.1 Generalized Evolutionary Operator

In a common evolutionary algorithm it is usual that first recombination is applied
on the population and then mutation is applied on some individuals. This can be
generalized, and more operators may be allowed. That is several operators can be
applied on the population sequentially. However, one may have more mutations,
and want to choose between them. Thus not only a sequential, but also a parallel
application has to be allowed. By generalizing this idea the operator groups can
be defined. An operator group can be a single operator or a set of operators to
be applied sequentially or parallelly. So the operators and operator groups can
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be organized into a tree-like structure, where the leafs are operators and the
internal nodes are operator groups. The three types of groups can be seen in
Figure 2 and are the following

(a) and (b) or (c) operator

Fig. 2. Types of operator groups

– AND – the operator groups are applied sequentially from 1 to n on the whole
population, using probability pi.

– OR – the operator groups are applied parallelly on the population, and the
result is the union of the resulted populations. The probability of inserting
an individual created by group i into the result is pi.

– OP – the evolutionary operator is applied on the whole population.

The apply method of the operator group takes two populations – an input
and an output population – and a size, that is the number of individuals to be
generated. The output population does not have to be empty, the new objects are
inserted to the end of it. The AND group takes the output of an operator group
as the input of the next one. The input of the first one is the input population,
and the output of the last one is inserted into the output population, as it can
be seen in Algorithm 2.

Algorithm 2 Applying an AND group
apply(input population, output population, size)
1 temporary population1← input population
2 temporary population2← empty population()
3 for i← 1 to n
4 do og[i].apply(temporary population1, temporary population2, size)
5 temporary population1← temporary population2
6 temporary population2← empty population()
7 op.merge with(temporary population1)

The OR group first partitions the required size into n partitions using the
probabilities of the operator groups. Then it uses the operator groups to cre-
ate individuals according to the partitions. The created individuals are inserted
directly into the output population. This method can be seen in Algorithm 3.
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Algorithm 3 Applying an OR group
apply(input population, output population, size)
1 sizes← weighed partitions(size, probabilities)
2 for i← 1 to n
3 do og[i].apply(input population, output population, sizes[i])

3 Object Oriented EA

In this section an object oriented evolutionary algorithm is designed using the
model and ideas from the previous section. The central object in the system is
of course the evolutionary algorithm itself, but first the most important building
block is designed, and it is the individual, that is the representation of the
problem.

3.1 Individuals

The most common way to implement individuals is to create an evolvable object,
and then use its descendants (subclasses) as representations for the problem, as
outlined in Figure 3(a) The Evolvable class gives the common interface, so the

Evolvable object

private
members

mutate

recombine

crossover

fitness

public interface

Evolution

Evop 1

apply
Evolvable object

private
members

operator 1

operator 2

operator n

evaluation 1

evaluation 2

evaluation m

public method 1

public method k

public interface

Evolution

Fitness 1
get

Fitness 2
get

Fitness m
get

Evop n
apply

Evop 2

apply

A

B

Evop i
apply

Fitness j
get

C

(a) Direct model (b) Indirect model

Fig. 3. Different models for Evolvable objects

evolutionary algorithm can modify the objects, and get their fitnesses. This will
be referred to as direct access, since the EA knows the interface of the Evolvable
class, and directly modifies the object. The direct model is used by the previously
mentioned C++ implementations of EA (GAlib, EO, GEA).

However, in this paper another approach is followed. Since it is not known,
how many operators the user wants to use, or how the fitness is calculated,
the Evolvable subclasses cannot be forced to implement a given number of op-
erators and/or a fitness function. Thus the EA class has no knowledge of the
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Evolvable class, these objects cannot communicate directly and therefore an ob-
ject is needed to connect them. This approach can be seen in Figure 3(b), where
the contact between the EA and the individual is established by Evolutionary
Operator and Fitness objects.

In this case the Evolvable objects may have several operators and fitness
functions, but it is also possible to modify and evaluate them using other, not
EA specific public methods. The disadvantage of this approach is that one has to
implement small Evolutionary Operator and Fitness Function classes. However,
operators have to be implemented anyway, so the only difference is that they
are now in separate classes. The advantage is generality. The Evolvable subclass
do not have to implement a certain number of operators. It can implement
more, less, or even none. The only required methods are randomization, cloning
and printing. The first two functions are needed because during the EA new
individuals have to be constructed. Another advantage of this approach, is that
it is also easier to parameterize the operators, since the Evolutionary Operator
classes may have private fields to hold several parameters.

3.2 Population

The individuals make up the population, and it can be implemented as a vector,
or as a set using standard arrays or the Standard Template Library. To con-
struct a versatile evolutionary algorithm, it can be very useful to separate the
population from the EA, and use an abstract class with a well defined interface.
Thus the EA does not have to care what is inside of the population. It may be
a simple array, or it may be in a file, in a database or even on a remote machine
somewhere in the Internet. What the EA needs is the possibility to apply oper-
ators and selections on the population to create new populations. And of course
inserting and removing individuals.

3.3 Operators

As mentioned previously, the operators are the link between the EA and the
individuals. Furthermore, they can be organized into operator groups. The only
functionality needed from operators and from operator groups is that they must
be able to be applied on populations. That is operators and operator groups take
populations and create new populations.

3.4 Selection

Selections are similar to operators. They also need a fitness function, according
to which they filter the individuals. As it can be seen from the general EA model,
the EA class does not have to know the fitness function either, only the selection
method.
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3.5 Algorithm

As discussed previously, the evolutionary algorithm itself knows the populations,
an operator group and four selections. Later it will be easier and more efficient,
to consider the populations created during an evolution loop as subpopulations,
that is parts of one population. Thus, the EA object has exactly one Population,
one Operator Group, and four Selections. The Population includes Evolvable
objects, the Operator Groups are composed of other groups and Operators, and
each selection has its own Fitness Function.

4 Implementation of the OOEA

Using the ideas and waypoints mentioned in the previous section, one can im-
plement a general EA. It is not the purpose of this paper to give a detailed
description of the implementation, but the important points are discussed in
this section. The class diagram of the system can be seen in Figure 4. The
classes and their most important functions are the following:

– EA: implements an evolutionary algorithm. Contains a Population, Opera-
tor Group and four Selections. Furthermore it has 5 parameters, which were
given at the general EA model. Besides the functions to set the parameters
and other components, it has a method to carry out one or more evolutionary
steps.

– Population: contains Evolvable objects, and has several set-like operators.
To be fast, only a pointer is given back, when an individual is requested, but
it is constant for security. The Population has one or more subpopulations
numbered from one, which can be used to store temporary populations, like
the set of parents, or the set of offsprings.

– Evolvable: the individual in an EA. It can be cloned and printed, and it
can generate a random individual.

– SelectionMethod: the most important method of this class is apply, which
takes a Population, and inserts the selected individuals into a second Popu-
lation. Usually it has a Fitness Function.

– FitnessFunction: it has a method called get that returns the fitness value
of an individual or the fitness values for a whole population. There is a special
descendant of this class called FunctionFitness. It stores a function pointer,
and uses it for fitness evaluation.

– OperatorGroup: contains a tree of OperatorGroups and/or Evolutionary
Operators. The method apply on is the most commonly used function. It
takes a population of parents, applies the group on it as described previously,
and inserts the new individuals into another population.

– Evolutionary Operator: the evolutionary operator. Its method apply is
the counterpart of the apply on method for operator groups.

These classes can be divided into three groups. EA and OperatorGroup are
fixed classes for any evolutionary algorithm, the user need not and can not modify
them. The Population and the SelectionMethod classes are customizable classes,
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they may be reimplemented, but it is not necessary, if the user does not need
special subclasses. There are already several selection and population implemen-
tations, they can be used with many problems. Evolvable, EvolutionaryOperator
and FitnessFunction are problem specific classes, thus in many cases they have
to be implemented by the user. However, bitstrings and real vectors, and the
appropriate operators are already implemented.

5 Examples

Using this general implementation many types of evolutionary algorithms can
be implemented. Some examples are listed in the following.

– ES with , or + strategy: real vector implementation can be used, and in case
of + strategy the copy selection can be used to insert the parents into the
offspring population.

– Traditional GA: the bitstring is already implemented in the system with
simple operators.

– Island Model: an evolvable population may be implemented as a subclass of
classes Evolvable and Population, and the fitness evaluation can include an
evolutionary algorithm.

– Meta-ES: similar to the Island Model
– Parallel EA: more populations and more EA objects with the same param-

eters may be created to implement this.
– Distributed EA: using a derivative of the Population object the individuals

may be stored on different machines. It is also possible to distribute the
individuals only for fitness evaluation, by implementing an appropriate get
method.

– Co-evolution: the second get method of the fitness function takes the whole
population, so it can be used to evaluate the individuals during a co-
evolution.

5.1 Using the Library

When the representation form is already implemented, to use evolutionary algo-
rithms is very easy. With 100-200 lines of C++ code even complicated problems
can be solved. An example is detailed in the following.

1. Implement a fitness function

double fitness(const Evolvable &i){ /* fitness calculation */ }

2. Create a new population then a random individual, and insert this individual
into the population

void test_ea(){
ArrayPopulation *pop = new ArrayPopulation();
ArrayPopulation results;
EvolvableRealVector evreal(4);
pop->insert(evreal.random());
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3. Create a fitness function object

FunctionFitness *ff = new FunctionFitness();
ff->set_func(fitness);

4. Create the used selection methods, and set their fitness function, if necessary

SequentialSelection *copy = new SequentialSelection();
BestSelection *bs = new BestSelection(500);
FitPropSelection *fps = new FitPropSelection(500);
bs->set_fitness(*ff); fps->set_fitness(*ff);

5. Create the operator objects

EvOpRealMutate eo_mut;
EvOpRealRecombine eo_rec(false);

6. Combine the operator objects into an operator group

OperatorGroup og, rec, mut;
rec.set_op(&eo_rec); rec.set_prob(800);
mut.set_op(&eo_mut); mut.set_prob(500);
og.set_and(rec); og.add_group(mut); og.set_prob(1000);

7. Create an evolutionary algorithm by giving the parameters. Then set the
population, the selections and the operator

EA *myEA=new EA();
myEA->set_params(1000,50,10,10,980);
myEA->set_population(pop);
myEA->set_psel(fps);
myEA->set_copy(bs); myEA->set_elitism(bs);
myEA->set_ssel(copy);
myEA->set_operator(&og);

8. Run the EA! After each step you can get individuals from the population,
read their fitnesses, print them, examine halting criteria, and so on

for (int i=0; i<100; ++i){ myEA->step(); /* save, print */ }

9. At the end delete the objects

delete myEA; delete fps; delete bs; delete copy; delete pop;
}

5.2 Extending the Library

It is easy to extend the library, only the following points have to be followed.

– A subclass of class Evolvable has to be implemented with the clone, random
and print on functions. The class may contain special methods for evolu-
tionary operators or for fitness evaluation.
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Fig. 4. UML class diagram of the general EA library

– The evolutionary operators have to be implemented. The most important
function is apply, which can use the public methods of the Evolvable class.

– The fitness function has to be implemented. It can be either a subclass of
FitnessFunction, or just a function as shown in the example.

– For special needs new selection methods may be implemented or the Popu-
lation class may be overloaded.
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6 Conclusion, Future Work

In this paper a general evolutionary algorithm was designed, and the steps of
its implementation were shown. Using this general EA many special types of
evolutionary algorithms can be implemented. The constructed system is simple
and still versatile, easy to use and easy to extend. It was not among the aims
of this paper to compare different programming libraries. However, it is planned
to compare some of them with respect to CPU and memory usage.

Some features would be nice to be added to the library like a logging function,
or error checking. It is also planned to change the randomization to be similar
to the evolutionary operator, that is separated from the Evolvable class. When
this is done, it may be considered to replace the inheritance based design to a
template based one. This would mean even higher level of generality.
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